Interim 1 Standards			
Standard	Content	Instr. Days	
M.BIE.ALG1.A.SSE. A.2	Use the structure of an expression to identify ways to rewrite	4-6	
	it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as		
	a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.		
M.BIE.ALG1.APR. A.1	Understand that polynomials form a system analogous to the	6-8	
	integers, namely, they are closed under the operations of		
	addition, subtraction, and multiplication; add, subtract, and		
	multiply polynomials.		
M.BIE.ALG1.A.CED. A.2	Create equations in two or more variables to represent	4-6	
	relationships between quantities; graph equations on		
	coordinate axes with labels and scales.		
M.BIE.ALG1.A.CED. A.3	Represent constraints by equations or inequalities, and by	4-6	
	systems of equations and/or inequalities, and interpret		
	solutions as viable or nonviable options in a modeling		
	context. For example, represent inequalities describing		
	nutritional and cost constraints on combinations of different		
	foods.		
M.BIE.ALG1.A.CED. A.4	Rearrange formulas to highlight a quantity of interest, using	4-6	
	the same reasoning as in solving equations. <i>For example,</i>		
	rearrange Ohm's law V = IR to highlight resistance R.		
M.BIE.ALG1.A.REI. A.1	Explain each step in solving a simple equation as following	4-6	
	from the equality of numbers asserted at the previous step,		
	starting from the assumption that the original equation has a		
	solution. Construct a viable argument to justify a solution		
	method.		
M.BIE.ALG1.A.REI. B.3	Solve linear equations and inequalities in one variable,	4-6	
	including equations with coefficients represented by letters.		
M.BIE.ALG1.A.REI. C.6	Solve systems of linear equations exactly and approximately	4-6	
	(e.g., with graphs), focusing on pairs of linear equations in two		
	variables.		
M.BIE.ALG1.A.REI. D.10	Understand that the graph of an equation in two variables is	6-8	
	the set of all its solutions plotted in the coordinate plane, often		
	forming a curve (which could be a line).		
M.BIE.ALG1.A.REI. D.12	Graph the solutions to a linear inequality in two variables as a	6-8	
	half-plane (excluding the boundary in the case of a strict		
	inequality), and graph the solution set to a system of linear		
	inequalities in two variables as the intersection of the		
	corresponding half-planes.		
M.BIE.ALG1.EE. B.5	Graph proportional relationships, interpreting the unit rate as	2-3	
	the slope of the graph. Compare two different proportional		
	relationships represented in different ways. For example,		
	compare a distance-time graph to a distance-time equation to		
	determine which of two moving objects has greater speed.		

Interim 2 Standards				
Standard	Content	Instr. Days		
M.BIE.ALG1.S.ID.C7	Interpret the slope (rate of change) and the intercept	4-6		
	(constant term) of a linear model in the context of the data.			
M.BIE.ALG1.S.ID.C8	Compute (using technology) and interpret the correlation	4-6		
	coefficient of a linear fit.			
M.BIE.ALG1.S.ID.C9	Distinguish between correlation and causation.	4-6		
M.BIE.ALG1.S.ID. A.1	Represent data with plots on the real number line (dot plots,	4-6		
	histograms, and box plots).			
M.BIE.ALG1.S.ID. A.2	Use statistics appropriate to the shape of the data distribution	4-6		
	to compare center (median, mean) and spread (interquartile			
	range, standard deviation) of two or more different data sets.			
M.BIE.ALG1.S.ID. A.3	Interpret differences in shape, center, and spread in the	4-6		
	context of the data sets, accounting for possible effects of			
	extreme data points (outliers).			
M.BIE.ALG1.S.ID. B.5	Summarize categorical data for two categories in two-way	4-6		
	frequency tables. Interpret relative frequencies in the context			
	of the data (including joint, marginal, and conditional relative			
	frequencies). Recognize possible associations and trends in			
	the data.			
M.BIE.ALG1.S.ID. B.6	Represent data on two quantitative variables on a scatter plot	4-6		
	and describe how the variables are related.			
M.BIE.ALG1.A.REI. D.10	Understand that the graph of an equation in two variables is	4-6		
	the set of all its solutions plotted in the coordinate plane,			
	often forming a curve (which could be a line).			
M.BIE.ALG1.A.REI. D.12	Graph the solutions to a linear inequality in two variables as a	4-6		
	half-plane (excluding the boundary in the case of a strict			
	inequality), and graph the solution set to a system of linear			
	inequalities in two variables as the intersection of the			
	corresponding half-planes.			
M.BIE.ALG1.A.APR. A.1	Understand that polynomials form a system analogous to the	3-5		
	integers, namely, they are closed under the operations of			
	addition, subtraction, and multiplication; add, subtract, and			
	multiply polynomials.			

Interim 3 Standards			
M.BIE.ALG1.REI. D.11	Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	4-6	
M.BIE.ALG1F.IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key features include intercepts;</i> <i>intervals where the function is increasing, decreasing, positive, or</i> <i>negative; relative maximums and minimums; symmetries; end</i> <i>behavior; and periodicity.</i>	6-8	
M.BIE.ALG1F.IF.B.5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.	6-8	
M.BIE.ALG1IF.B.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph	6-8	
M.BIE.ALG1F.IF.C.7. a	Graph linear and quadratic functions and show intercepts, maxima, and minima.	3-5	
M.BIE.ALG1F.LE.A.2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	4-6	
M.BIE.ALG1A.APR. A.1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	3-5	